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Variables control charts implement process state testing by separately assessing the measures of central
tendency and spread. This work, based on the ideas of bivariate process control, analyzes whether the
standard charting method could be considered as optimal and presents an alternative mode of process
evaluation-~biparameter description in terms of the joint distribution of sample averages and standard
deviations. Thus it becomes possible to benefit from the advantages of this approach and at the same time
to overcome its main shortcoming, namely lack of diagnostic ability. The proposed single X chart with
adaptive control limits provides a reliable tool for recognizing process state and indicating the parameter
responsible for an out-of-control state. Additionally, the proposed-method does not require a constant

sample size during data coflection.

Introduction

ANALYSIS of the statistical behavior of a process
implies 2 decision concerning its stability-
whether the observed changes are caused by inher-
ent variability (random fluctuations) or by so-called
assignable causes (changes due to equipment deteri-
oration, incoming material guality, employees' mis-
takes, etc.).

Control charts, suggested and developed by Shew-
hart (1981) more than 60 years ago, provide a useful
and simple method (see, e.g., Porter and Caulcutt
(1992)) for dealing with such problems. All control
charts have a common structure. A plot of the re-
sults of repeated sampling is made on a vertical scale
against the number of samples plotted horizontally.
The chart centerline represents the long-term average
of the process statistic or its standard value. The up-
per and lower control limits (UCL and LCL, respec-
tively) represent the boundaries of typical statistic
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variation. Points falling outside the control limits
call for adjustment. In order to detect departures
from expected process behavior within the limits (so-
called nonrandom patterns on the chart), different
run tests for pattern recognition are used (see Nel-
son {1985)).

Two kinds of errors may occur when using con-
trol charts: overadjustment {personnel reacting to
process variations that are merely the result of com-
mon causes) and underadjustment {an appreciable
process change due to an assignable cause is not de-
tected). These errors are caused by the uncertainty
of inferences based on sampling statistics, and their
magnitude depends on the decision-making method.

In the Arst section of the work, the standard pro-
cedure of hypothesis testing is compared with the
control chart technique consisting in separate test-
ing of hypotheses about the measures of the process
central tendency and spread. It is shown that the
technique is equivalent to construction of a rectan-
gular control region whose boundary points have no
mutua) property; therefore, in analogy with multi-
variate control “botk the Type I and Type II errors
for a sample point correctly plotting in control are
not equal to their advertised levels for the individual
control charts” {Montgomery (1991)).
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In fact, the control chart method for variables rep-
resents the particular case of bivariate process control
(BPC) for which the independent variables are rep-
resented by the process mean and the measure of its
variability. Use of separate univariate (‘uniparame-
ter’ in our case) charts for bivariate control can be
misieading, so in BPC it is customary to construct
an elliptical control region {dictated by the joint bi-
variate distribution) for the controlled variables. If a
sample point plots outside the region, visual inspec-
tion may reveal which parameter is responsible for
this condition.

The main disadvantage associated with the con-
trol ellipse is that on-line process surveillance is
practically impossible. This shortcoming is avoided
by reduction of the problem rank. In conventional
BPC the one-dimensional x? statistic, depending on
jointly controlled quality characteristics, is computed
and charted on a Hotelling’s 72 control chart (see Alt
and Smith (1988)). This chart cannot distinguish be-
tween the different assignable causes of process dis-
turbance (variation of either the first or the second
variable); therefore it can only be used in conjunc-
tion with the standard Shewhart charts, which serve
as auxiliary cause-recognizing charts for cases where
the basic T2 chart indicates an out-of-control state.

Reduction of the problem rank for univariate cases
by plotting a statistic depending on both process
mean and variance has been considered by some au-
thors. For example, Reynolds and Glosh {1981) pro-
posed plotting a statistic representing the squared
standardized deviations of the observations from the
target value. This statistic represents the current
standardized counterpart of the Taguchi loss func-
tion. Monitoring the value of this function is also dis-
cussed by Derman and Ross (1894). Obviously, these
charts are not intended for evaluation of process sta-
bility but its uniformity, which can be characterized
by a quality loss occurring when the process devi-
ates from its desired value and generates nonuniform
products. Incidentally, these charts are incapable of
distinguishing a shift in the mean from an increase
in variance.

The optimal shape of the control region for the
case of simultaneously controlled process mean and
variability is determined in the second section. The
region boundary is characterized by the same value of
probability density function (pdf) of the joint sam-
pling distribution for averages and standard devia-
tions. It is shown that the region represents the un-
biased most powerful test. The control region bound-

Vol 28, No. 3, July 1996

ary corresponds to the critical value of the proposed
one-dimensional B statistic, which depends on the
sample mean and standard deviation.

The third section is devoted to development of
the new charting technique based on the relationship
between the sample statistics for the points bound-
ing the control region. The chronological record of
the introduced statistic (B chart) can be used for
the process state testing. Compared with Shewhart
charts, the B chart is characterized by reduced prob-
ability of Type II error, but cannot distinguish be-
tween the different assignable causes of an out-of-
control state (in analogy with the above-mentioned
charts for process uniformity evaluation).

The proposed alternative charting technique is
based on correction of the X chart control limits in
accordance with the shape of the true contrel region.
The charting procedure implies continuous revision
of the limits depending on the sample standard de-
viation. The suggested X chart with adaptive con-
trol limits characterizes the process as a whole. It
contains the information about the behavior of both
the central tendency {X plot) and spread {control
limits). The chart combines the advantages of the
standard variables charts and the BPC approach. It
reduces the adjustment errors (versus the Shewhart
charts), reflects the process dynamics (in contrast
with the control ellipse), and retains the cause recog-
nition ability (in contrast with Hotelling’s 72 control
chart).

The last section of the work presents a case study
with comparative analysis of the standard and pro-
posed charts.

Backgound on Control Charts
and Hypothesis Testing

The main goal in process state testing can be for-
mulated as follows: “Do the results of sampling indi-
cate that the process pdf remains the same?” Al-
though both modern statistical theory and infor-
mation theory provide many tools for solving this
preblem {Information Divergence, Mahalonobis Gen-
eralized Distance, etc., see, e.g., Duran and Odell
(1974)), the same control charts have been used in
induséry for vears because of their simplicity.

The charting technigues represent a continuous
procedure of hypothesis testing (see, e.g., Meredith
{1990), Mittag and Rinne (1993)), although many
would disagree with this statement. Indeed, there
are at least two significant differences between the
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techniques and hypothesis t,ésting. First, rejection of
a null hypothesis in statistical process control (8PC)
must be supported by a follow-up investigation to
identify assignable causes, whereas the common pro-
cedure of hypothesis testing allows rejection on the
basis of comparison of the test statistic with the test
critical vaiue only. Secondly, a null hypothesis in
SPC can be rejected not only for salient points on a
control chart but also due to nonrandom behavior of
the obtained data, whereas hypothesis testing does
not imply any analysis of data patterns.

Nevertheless, many SPC specialists agree that “a
Shewhart control chart ... is equivalent to applying
a sequence of hypothesis tests” (Chengular, Arnold,
and Reynolds (1989)). The centerline represents
the hypothesized mean value of the process param-
eter; the control limnits represent the critical values
of the two-sided test for the nuil hypothesis accep-
tance region, and each point represents a test value
for the given sample. The alternatives in using con-
trol charts can be stated (see Diamond (1989})) as

e General Null Hypothesis (Ho): No essential dif-
ference exists between the properties of interest
(given by pdf) of the two populations; versus

« General Alternative Hypothesis (H;): A signifi-
cant difference does exist between the properties
of interest (given by pdf) of the two populations.

The variables control chart procedures used for com-
parison of populations implies two separate consec-
utive steps where the general null hypothesis is split
into two simple null hypotheses concerning popula-
tion means and variances

o First Simple Null Hypothesis (Ho): 0% = 0§ ver-
sus Hy: o # o3; and

« Second Simple Nuil Hypothesis (Ho): p = po ver-
sus Hy: p # po,

where pg and og are characterized by the chart cen-
terlines, and u and o are estimated by the sample
statistics.

The decision-making method is the same for both
the first and second steps: if the points fall outside
the corresponding control limits, the null hypothesis
is rejected. Rejection of at least one of the simple
pull hypotheses leads to rejection of the general null
hypothesis. Thus, a positive decision as to whether
a sampling point belongs to the universe is based on
the logical and of the simple null hypothesis

o =of and p=po. (1)
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To determine whether the process mean is at the
standard value, the control chart for averages (X) is
most widely used, while charts based on either the
sample range R or the sample standard deviation
S are used to monitor process variability. In this
wark, we will concentrate on the combination of X-
S charts, although the proposed approach is valid for
the X-R combination as well. Note, that according
to Shewhart (1981), the S chart is preferable to the
R chart for monitoring variation due to two main
reasons: the standard deviation is more efficient and
less dependent on the furm of the parent distribution.
However, in later works it was shown that the range
can be successfully used for process variability chart-
ing “when its undesirable statistical characteristics -
are combined with its ease of application” (Nelson
(1994}).

Use of separate X and S charts is equivalent to
plotting (X, S) on the single graph formed by super-
imposing the X chart over the S chart, as shown in
Figure 1. The control limits for each chart plotted on
their corresponding axes form a rectangle (referred
to a5 the Shewhart Rectangle) representing the con-
trol region for this X.5 graph. For all points falling
within the Rectangle, condition (1) is met, so the
general null hypothesis cannot be rejected.

Elliptical Control Region

In the present work, we suppose that the boundary
of the true control region should represent a locus of
points with & given mutual property. For example,
in the T2 chart the control region is bounded by an
ellipse of equal x*-statistic values corresponding to
the chart’s UCL. It can be shown (see Lemma 1 and
its proof in Appendix A} that for the case of no a
priori information concerning possible process drift
from its stable state, the most powerful test for a
given significance level corresponds to a control re-
gion bounded by the locus of iso-pdf points.
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FIGURE 1. Graphical Description of the Variables Control
Chart Decision-Making Method.
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Taking into account the mutual orthogonality of
the sample averages and standard deviations, the pdf
of the joint X-S distribution can be written

p(X,S) = p(X)p(S)

where, on the assumption that samples of size n are
drawn from a normal universe with parameters p and
o, p(X) and p(S) denote the pdf of the sampling
distribution of averages and standard deviations (see
Fisher (1973)), and

p(8) = ar(z%i) (71-2-1)"“1 (;)n—-z
X exp {_ (11__;:__{) (g)zj} |

The joint X—§ distribution corresponds to a sur-
face in three-dimensional space (see Figure 2gj,
whose horizontal sections represent conirol regions
{whose area depends on the given significance level
o) bounded by contours of constant pdf (see Figure
2b). For a small sample size, n £ 5, the contours
have an oval shape due to the positively skewed S
distribution; for n > 5 the contours become more el-
liptical. At the top of the joint distribution the con-
trol region generates into a point with coordinates
Xmode= i and Smege = ¢+/(n—2)/(n —1). Intro-
ducing the standardized variables Z= (X —p)/c and
S = (5/7)/(n—1}/(n —2), the pdf of the joint

sampling distribution can be written

plZ,8%) = Win) (2)
{ nZ 4(n -5 = 26n(5") - 1]
Xexpy — 3
where

i H a(n - 2)~!
Win) = l"(ﬂ-::,‘—l) \/7&'2"‘2 exp{n —2)’

Obviously, the iso-pdf contour bounding the control
region corresponds to the same value of the exponent
power in braces, which can be designated as the B
statistic
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FIGURE 2. (2) The Joint X=S Sampling Distribution for
n = 5, and (b) its Contours at (1) & = 1 - (0.6826)% =
0.54406, (2) o = 1 - (0.9546)2 = 000574, and (3} & = 1
- (0.9973)? = 0.0054.

B=05{nZ +(n~2[S)? ~26(s) -1} (3)

It can be shown that the distribution of the B
statistic can be approximated by the exponential dis-
tribution with zero minimal value and unity expec-
tation and variance (see Appendix B)

p(B) = exp(- B}

Buin =10
E(By=1
Var(B) =1.

The probability of finding a sample point (X,8) in-
side any iso-pdf contour is given by the B statistic
and

Blffl‘
/ p(BYdB =1 - a. (4)
1]

From (3) and (4) it follows that the critical B value
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is universal for any sample size and depends only on
the accepted a

Bei = —{n{a). (5)

Obviously, the a value could be selected more or
less arbitrarily, but since it is-customary to use o =
0.0027 for the standard control charts, one can get
for the joint distribution that o = 1~ (1~ 0.0027)° =
0.0054. Thus, according to (5) one can get Bera =
5.22.

The suggested B statistic closely resembles the test
developed by Neyman and Pearson (1928) to test
whether a sample was drawn from a normal distri-
bution with specified parameters. Using the adopted
designations, the Neyman-Pearson statistic can be
written as

K = 0.43429 [22 +3-;—71—2(S' )2 —26n(S")

-a()]

The critical values for the K statistic depend on
sample size and given significance level {see Nelson
(1994)). Comparison of the B and K statistics shows
their significant difference for small n values and al-
most complete coincidence for large sample size. For
example, if 4 = 0 and ¢ = 1, then the control regions
for n = 5 and ¢ = 0.01 can be presented using these
statistics as follows:

« the B statistic:

F° 1085 — 1.22fn(S) < 2.615

e the Neyman-Pearson statistic:

% +0.85% — 2£a(S) < 3.054.

The control regions for n = 50 and the same signifi-
cance level are given by

» the B statistic:

%% 10.988% ~ 1.92£a(S) < 1.164

o the Neyman-Pearson statistic:

X~ +0.985% —24n(S) < 1.167.
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In order to illustrate the difference between the
control regions given by the different approaches, a
process with normal random variation N(0,1) was
generated. The results of sampling (sct of 1800 sam-
ples, n = 5) are shown in Figure 3. The ovals corre-
sponding to the critical values of the proposed test
and the Neyman-Pearson test (referred to as the B
and Neyman-Pearson ovals, respectively) were com-
puted according to a = 0.0054. The Shewhart Rect-
angle was set up using the corresponding control
chart factors. Figure 3 shows the significant differ-
ence between three regions—the area of the B oval
is approximately 9% less than that of the Rectangle
and 24% less than that of the Neyman-Pearson oval.
One can see that the B oval suits best the shape of
the scatter diagram, and both the empty Rectangle
corners and the empty annulus bounded by the right-
hand parts of ovals only increase the probability of
underadjustment.

Obviously, all comparisons of the control region
areas are completely meaningful only if the out-
of-control distribution is uniform. The assumption
about uniformity results from the absence of a priori
information concerning possible process variations
from its stable ‘in-control’ state. Therefore, one can
assume that any point corresponding to the given
assignable cause can appear in the sample space with
the same probability (see Appendix A). Incidentally,
the Shewhart Rectangle is set up implicitly from the
same assumption (the two-sided alternative hypothe-
ses with identical significance level value for the pro-
cess mean and variance).

For small sample size, both the B oval and the
Shewhart Rectangle have significantly more power
than the Neyman-Pearson test. Since sample sizes

AVERALE
it i) SRS PR TR RRIEPTPTEEL CELSEA R S

1,68

. 388 .98d 1.30 2.48 z.78
, STAMDARD DEVIATION

FIGURE 3. X-5 Graph presenting the Results of Monte
Carlo Simulation for the Shewhart Rectangle (1), the
Neyman-Pearson Oval (2), and the B Oval {3). *is the
Sampling Data.
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of four through six are quite commez in industry
for establishing control charts, the Newman-Pearson
statistic is inapplicable for charting purposes. For
large n the power of the proposed and Neymao-
Pearson tests are almost the same znd exceed the
power of the Shewhart technique of cozsecutive test-
ing. Almost complete coincidence of she B and the
Neyman-Pearson ovals for large sampie size is illus-
trated by Figure 4.

To demonstrate the advantage of the suggested
control region over the Shewhart Rectangle for small
n, let us suppose that the generated process evolves
along the pdf gradient line through the right-hand
upper Rectangle top (Z= 1.342, 5 = 2.268). The
power function of the B oval against the Rectangle
(for simultaneous changes in both process parame-
ters) is shown in Figure 5 where the 3 value was cal-
culated as the relative number of gezerated points
remaining within the control region for a given shift
of the process parameters. The steeper curve of the
oval indicates that its power is signiSicantly higher.
Qbviously, the power curve looks difzrent for other
gradients and there are cases where zhe traditional
approach is more powerful, but as 2 whole a control
region bounded by the locus of iso-pc< points, repre-
sents a most powerful test (see Lemmsz I in Appendix
A).

Improved Charting Technique

B Chart

The chronological record of the = statistic (B
chart) can be used for process state sesting. Berit
represents the decision-making limir value, UCL.
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FIGURE 4. Control Ovals Corresponcing to o = 0.01
and Different Sample Sizes. The 8 Ovais are n = 20 (1)
and n = 50 {3). The Neyman-Pearson Cwals are 0 = 20
{2) and n = 50 (4).
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FIGURE 5. Power Function of the B Qval (1} versus the
Rectangle (2).

We consider that the process is in an “in-control”
state for any point satisfying the inequality B(X;,
8;) € B.sit, and that it is in an “out-of-contirol” state
if B(X:,5:) > Bene. Unlike the Shewhart charts
intended for separate testing of two simple null hy-
potheses concerning population parameters, the B
chart represents the technique for the general null
hypothesis testing. Incidentally, it is shown in the
work of Neyman and Pearson {1928) that separately
testing the two hypotheses about process central ten-
dency and spread is not equivalent to the technique
based on “setting up the contours of equi-probable
doublets (X, $)" which is intended to test “whether
a given sample ... has been drawn from a speci-
fied population.” The one-dimensional B statistic,
being an analog of the x* statistic used in the con-
ventional BPC, is characterized by the same advan-
tage and drawback—the reduced underadjustment
error is combined with the inability to distinguish
between different assignable causes of process distur-
bance (shift in mean or increase in variance).

X Chart with Adaptive Control Limits

Rejection of the rectangular control region in-
evitably leads to rejection of the concept of constant
controt limits on process control charts. Obviously,
the eiliptical shape of the constructed optimal con-
trol region dictates an alternative charting technigue
based on adaptive control limits. The latter can be
defined either by the critical values for X; as a func-
tion of S; or by critical values for S; as a function of
X ;. Since testing of both simple null bypotheses im-
plies setting critical values based on the measure of
process spread, the dependence of the X chart limits
on the sample standard deviation is the basis for the
suggested technique. Taking into account that X
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and §; for the boundary contour are related by (3)
and that for pa.irs (jf :,5;) falling within the control
region B; < By substitution of {5) on the left-hand
side of {3) ytelds the equations for the X chart limits
as a function of S;, then

{‘;g;} = pto /R signEs)  (6)

where UCL; and LCL; represent the control limit
values for the i*} sample and

(n=2){1 +2&n(57)° — (S7)]
n

- 2¢n(e)

K=
There are three possibilities for Ki:

1. K is positive for any sample standard deviation
between the left and right vertices of the bound-
ary contour. Vertex values are given by the roots
of the equation

2 _ 1 1én(a)
(§7)*—2£n(S") =1 —
2. K; = 0 when the sample standard deviation is

equal to the vertex values. For this case the con-
trol limits on the X chart touch each other and
the central line.

3. K; is negative for the sample standard deviation
leftwards from the left vertex or rightwards from
the right one.

For the ‘No Standard Given' case, the correspond-
ing sample estimates of the population parameters
are used in (6) instead of ¢ and p. (At the same
time, the control region becomes somewhat blurred
and the method sensitivity is impaired, but quanti-
tative analysis of this case is beyond the scope of the

paper.)

The above expressions imply continuous revision of
the control limits on the X chart in accordance with
variation of the § value, irrespective of whether S;
has exceeded the allowahle limits; whereas the con-
ventional procedure implies revision only on the full
set of samples and only subject to presence of salient
points on the charts. In terms of hypothesis testing,
the proposed procedure requires determination of the
critical values for each test, in contrast to the con-
stant critical values on the standard X chart. The
proposed chart partly resembles the charts for vari-
able subgroup size, where due to the variable sample
size, control limits must be calculated for each sam-
ple (see, e.g.. Burr (1976)).

Journal of Quality Technolegy

The dynamices of the X chart with adaptive control
Limits can be used for detecting process variability.
This can be illustrated by analysis of the influence of
S value variation on the behavior of the limits. There
are several basic patterns on the S chart that “can
oceur within any given process” (Garrity {1993))

A. a jump, or tremendous shift between two consec-
utive points;

B. a run, or a series of consecutive points that fall
on one side of the centerline;

C. a trend, or a series of consecutive points contin-
uing to rise or fall in one direction;

D. a cycle, or a series of points displaying a similar
or repeated pattern over an equal interval of time;
and

E. hugging, where the points remain close to the
centerline.

All these patterns and the equivalent responses of the
control limits are shown in Figares 64 and 65, respec-
tively (the limits on the S; chart correspond to the
leftmost and rightmost points of the boundary oval
for n = 5). One can see that the limits synchronously
follow the S-value fluctuations. As the sample stan-
dard deviations concentrate in the vicinity of Siede:
the X chart control limits become wider. The closer
the S value to the control limits on the S chart, the
tighter the X chart control limits. Overlap of the
limits indicates the S value exceeds its control limits
{as a rule, the UCL on the S chart).

It should be emphasized that the proposed X
chart with adaptive control limits contains informa-
tion concerning both the central tendency and spread
variations. The sensitivities of this chart and B chart
to the process drift are absolutely identical, and nei-
ther requires a constant sample size during data col-
lection. ‘The difference between the charts is that the

STAMDARD - BEVEIATECH «oooareem

(a) 2.21
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FIGURE 6. {a) Patterns on the S Chart, and (b) Control
Limits on the X Chart as a Function of Sample Standard

Deviation Value.
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former not only provides a reliable basis for judging
whether the process is in statistical control, but for
an out-of-contro] state also indicates the parameter
responsible for it.

An application example of the proposed approach
is given below.

Case Study

The viscosity of the first 25 samples of size & were
measured during the start-up phase in development
of a new chemical process. These samples were used
to establish the X and S charts (Figures 7a and
7h, respectively). The calculated sample statistics
yielded the estimates of the universe parameters of

X=37.98 and S= 0.303. Analysis of the standard
X-S charts shows that there are no points outside
the control limits on the § chart, though four points,
(6, 12, 14, and 21) are out of control on the X chart.
The same data were used to construct the B chart
and an X chart with adaptive limits (Figures 7¢ and
7d, respectively). Samples were obtained at hourly
intervals over a period of three days. During this
period, all technological parameters were carefully
recorded. The results of charting were compared

ARD-.DERIAT - Hrapmennamiam————g e

(b) s T

5
FESIIG

(d)

E] 12 13 tL 2s

FIGURE 7. Case Study Charts for {a) Averages, (b} Stan-
dard Deviations, (c) B Statistics, and (d) X Chart with
Adaptive Control Limits.
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FIGURE 8. Case Study Graph for the Shewhart Rectangle
{1) and the B Oval (2). * is the Sampling Data.

with the parallel technological records in order to
be certain of identifying the assignable causes of all
salient points on the charts.

The standard and proposed charts lead to the same
conclusion at points 6, 12, and 21 and to different
conclusions at points 9 and 14. Obviously, the dif-
ference is caused by the S values for these points.
Point 9 lies near the LCL on the standard X chart
and near the UCL on the S chart. Hence, it falls out-
side the control limit on both the B chart and the
X chart with adaptive limits. By contrast, point 14,
characterized by standard deviation near the 5§ mode
value, does not exceed the UCL on these charts.

Comparative analysis of the records and charts
provided evidence {infringement of the operating reg-
ulations) for points 6, 9, 12, and 21, however mo
assignable cause has been discovered for point 14.
Thus, the decisions based on analysis of the proposed
charts are characterized by better reliability.

The B oval and Shewhart Rectangle for the case
are shown in Figure 8. Visual inspection of the graph
leads to the same conclusions—points 6, 12, and 21
fall outside the oval and the Rectangle; point 9 falls
in the Rectangle corner and outside the oval (under-
adjustment}; and point 14 falis inside the oval but
outside the Rectangle (overadjustment).

Conclusions

The following points can be observed.

1. Process state testing by means of the standard
variables control charts is equivalent to construc-
tion of a rectangular control region. It was shown
that the region cannot be considered optimal.

Journal of Quality Technology



328 PAVEL GRABOV AND DOV INGMAN

2. The suggested optimal control region has an el-
liptical {oval) shape and was demonstrated to
be the most powerful test (proceeding from
the assumption concerning a uniform out-of-
control distribution—see Appendix A). The re-
gion boundary represents the locus of points hav-
ing the same pdf value of the joint sampling dis-
tribution for averages and standard deviations.
The chronological record of the one-dimensional
B statistic corresponding to the control region
boundary can be used for process state testing.

3. The equation obtained for the boundary of the
control region is used to construct an X chart
with adaptive control limits. The charting proce-
dure implies continuous revision of the limits de-
pending on the sample standard deviation value.
The proposed single chart can be used for pro-
cess state testing instead of the pair of Shewhart
charts for variables. It combines reliable decision
making, characteristic of the BPC method, with
recognition ability, typical of the standard vari-
ables charts. It also does not require a constant
sample size during collection of the data.

The suggested charting technique also allows sig-
nificantly increased efficiency of pattern recognition
while monitoring the process. The solution of this
problem using the proposed charts will be shown in
further detailed research work in progress by the au-
thors.

Appendix A

Let us introduce the two-dimensional finite sample
space E with an area A in which a sample is described
by a point Y(X,5). A process in this space is char-
acterized by out-of-control and in-control states. We
assume that the out-of-control subspace is identical
to the E space and contains the in-control subspace.
A quality control system generates sample points in
the E space with different conditional probability
densities

« p(Y|Hp) - pdf of the sampling distribution in the
in-control subspace under the condition that Hy
{general null hypothesis) is true; and

e p(Y|Hy) - pdf of the sampling distribution in the
out-of-control subspace under the condition that
H, (general alternative hypothesis) is true.

In most cases p{Y|Hg) is known, while on the
contrary there is no a priori information concerning
possible process variations from its stable in-control
state (we do not consider here the rather rare sit-
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uation of forecast instability described by Abraham
and Kartha (1979)).

We suppose, therefore, that any point {}? i291)
caused by any assignable cause can appear in the out-
of-control subspace with the same probability. Thus
p(Y|H)) can be described by 2 uniform distribution
(see Barnard (1959)), characterized by maximal en-

-tropy. So p(Y|H:) is given by

1

YiH)) = —
where A denotes a constant value depending on the
E-space limits.

The control region C in E space at significance
level e can be defined through the probability 1 — &
of a point ¥ being observed within C, under the
condition that Hg (general nuil hypothesis) is true,
that is,

Pr(Y € C|Ho) = f f p(Y|Ho)dX dS=1-a.
(A1)
The critical region Cee in E space can be defined
as a totality of points not belonging to the control
region C. Then at the same significance level

Pr(Y € Cunltio) = [ [ p(¥IHo)X 85 =c.
(A2)
Obviously, one can construct an infinite nurmber of
control regions with different power and the corre-
sponding critical ones, satisfying (A1) and (A2).

Lemma 1. A control region bounded by the locus
of iso-pdf points, represents a most powerful test and
has the minimal area.

Proof. Let us introduce a control region C* in E
space, whose boundary represents the locus of points
having the same pdf value pp {depending on the sig-
nificance level). Then for the corresponding critical
region CJ;, in E space

_ [ <pq, for each ¥V € Ol
P(¥|Ho) = {z po, foresch’Y g Cogy . )

Dividing (A3) by the constant value p(Y'|Hy), we get

p(Y1Ho} { < Apg, foreach Y € Clyy
p{Y|H) T\ 2 4py, for each Y & Clpis -

This is nothing less than the requirement of Neyman-
Pearson theorem for the most powerful test (see, e.g.,
Brandt (1976)). Obviously, the test is unbiased due
to its definition given by (Al).
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For any other control region C, which may partly
overlap with C*, in accordance with (A2)

f/mmmmfds:/fmwmmfda

Using the notation of Figure 9 and taking into ac-
count that F is contained in both C* and C, we can
write

D +G) = pH +1). (Ad)

where 5" and j are the average probability density
for €* and C, respectively. Since both 17 € C* and
G € C*, and both H ¢ C* and I ¢ C*, the pdf
for each point in H or I is less than the pdf for each
point belonging to D or G. Moreover, it follows from
{A3) that the minimal pdf in D and G is greater
than or equal to the maximal pdfin H and I. Thus,
it is obvious that 7* > g and from (A4) we have
that D + G < H + I—the control region C* has the
minimal area.

Appendix B

Let us consider the annulus bounded by two con-
centric elliptical contours corresponding to two val-
ues of the B statistic: B (smaller contour) and
B + dB (larger contour). The probability of a point
Y being observed within the annulus can be written

C

FIGURE 9. Comparison of the Areas in the Control Re-
gions £ and C.
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FIGURE 10. Dependencies W(n)$ versus B obtained by
Numerical Integration.

by means of a product of iso-pdf on the smaller con-
tour p(Z, $*) and the annulus area 4S5 or using the
pdf of the B statistic distribution p(B)

Pr(Y € dS) = p{Z,5")dS = p(B)dB. {B1)

Substituting (2) and (3) in (B1) yields
ds
P(B) = W(n) = exp(~B).

Since § = O when B = 0 (the peak of the joint
sampling distribution}, one obtains p{B) = exp(—~B)
if

Win)S = B. (B2)

The dependencies W(n)S versus B obtained by
numerical integration with different n are shown in
Figure 10. These dependencies can be written as

Wi{n)S = B ~ mB?

where for
n=3 m=0.02342, p= 177099
n=3a m=0.00630, p= 2.13049
n=7: rme=0.00324 p=227133

n=10: m=0.00189, p = 2.32515

All these dependencies are very close to (B2). es-
pecially for n > 5 and B < Beie = 5.22 (critical
value for o = 0.0054), hence the distribution of the B
statistic can be approximated by the exponent with
the sufficient accuracy. Accurate numerical pdf cal-
culation for the B statistics yields for

n=23 B =5.08
n=25 B, =512
n=T7 Bg.=05.15
n = 10: er_ = 5.18
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