

SOFTWARE FAILURE

MODES AND EFFECTS

ANALYSIS (FMEA)

MEA for Software? If your system is

safety critical, and your hardware is getting

the FMEA treatment, you had better not treat

your software as any less critical. As in the

case of hardware, a software FMEA is an incredibly

valuable addition to the organizational knowledge

base. Every additional program FMEA will reduce

future FMEA efforts and will also provide the basis for

safer and more cost effective design and coding in the

future.

As in hardware, the software FMEA shows:

• Critical failure effects

• Failure modes leading to these effects

• Where additional protection is required.

Does software fail? We tend to believe that well

written, well tested, safety critical software never fails.

Experience proves otherwise, with software making

headlines when it actually does fail, sometimes

critically. Software does not fail the same way

hardware does, and the various failure behaviors we

are accustomed to from the world of hardware are

often not applicable to software. However, software

does fail, and when it does, it can be just as cata-

strophic as hardware failures. The FMEA is not

specific to a type of failure behavior or a certain type of

failure statistic; it is universal and extremely useful to

software as well. When properly done, the FMEA

offers an exhaustive and complete review of potential

critical failures due to software function.

What are "software failure modes"?
Software, especially in critical systems, tends to fail

where least expected. We are usually extremely good

at setting up test plans for the main line code of the

program, and these sections usually do run flawlessly.

Software does not “break” but it must be able to deal

with “broken” input and conditions, which are often

causes for “software failures”. The task of dealing with

abnormal/anomalous conditions and inputs is handled

by the exception code dispersed throughout the

program. Setting up a test plan and exhaustive test

cases for the exception code is by definition difficult

and somewhat subjective. The FMEA removes this

difficulty and provides a guide to ensure completeness

of the testing and certification process.

Anomalous inputs can be due to failed hardware,

timing problems, harsh/unexpected environmental

conditions and multiple changes in conditions and

inputs that are beyond what the hardware is able to

deal with. Bad user input may also be a source for

such exception conditions. Often the conditions most

difficult to predict are multiple, coinciding, irregular

inputs and conditions.

How do we protect our critical
systems from such software failures?

The FMEA process ensures exhaustive identification

of exception condition initiators, and verification that

protection against faults in exception handling, are in

place and effective!

Although slightly different from a hardware FMEA,

when properly executed, the software FMEA is

compatible with hardware FMEAs and permits a full

system FMEA. Hence it provides the assurance, that

other certification processes cannot, that we have

identified all possible failure modes and have included

provisions to detect and protect against them.

Severity Level: I
System Failure Loss of longitudinal Control
Item ID Item Failure Cause
1.1.2 Pitch_FB Stuck
1.1.3.1 <Nz_g> Stuck

Severity Level: I
System Failure Extreme surface deflection
Item ID Item Failure Cause
1.1.3.1 <Nz_g> Absent

Severity Level: II
System Failure Erratic longitudinal control
Item ID Item Failure Cause
1.1.1 Nz_cmd > Limit
1.1.2 Pitch_FB > Limit
1.1.2 Pitch_FB Absent

 A list of system effects according to their
severity, and all the failure modes and items
that can lead to these effects will provide the
backbone to your certification process and
will allow complete mitigation of possible
safety critical problems.

Software FMEA – How?

One of the main reasons the FMEA hasn’t been a

consistent part of critical software certification is the

difficulty in applying it to a large piece of code. SoHaR

has developed a methodology that overcomes this

problem by using the object view of the program.

Whether developed as a UML or MatLab Simulink

model, or coded in an object-oriented language such

as C++, .Net or Java, we apply our FMEA methodology

at the object level. Along with requirements and design

documents we are able to construct a software FMEA

F

ALD

SOFTWARE FAILURE MODES

AND EFFECTS ANALYSIS (FMEA)
that is surprisingly similar to a hardware FMEA, as

software “objects” are equivalent to hardware “parts”.

Moreover, when required, we will develop and

generate a system FMEA which will include hardware

and software and any interface failure modes.

Our method overcomes another inherent software

FMEA problem that most professionals cannot escape:

the subjectivity of the process. Most software safety

professionals will apply the FMEA at a “functional”

level. This application is not only problematic in that it

can leave entire sections of the exception code

unevaluated, but it also introduces a subjectivity into

the process that allows more failure modes to be

ignored. Our object-centered method removes this

subjectivity as it uses the classes defined in the

design.

Automated Software FMEA

FMEAs, applied to software or hardware, are a large

task. Hardware FMEAs are automated through an

exhaustive system breakdown tree, or Bill Of Material.

SoHaR has developed automated tools and methods

for generating a complete software FMEA based on

object-oriented software models. Our tools are

currently able to automatically generate the FMEA for

models developed in UML (Unified Modeling

Language) or within the MatLab Simulink environment.

Benefits of using our automated tools include:

• A significant reduction in work load (by

several orders of magnitude)

• Assurance of completeness of the task (no

failure modes left behind)

• Libraries for future use that reduce work load

even more (software and interface components,

failure modes, higher order effects, detection

methods, compensation provisions)

What Can You Expect From SoHaR’s
Software FMEA Services and Tools?

SoHaR provides both consulting services and tools for

the Software FMEA. Our services cover the entire

spectrum of organizational needs:

• SoHaR can perform the entire task of

developing the FMEA for your system and

generating the complete FMEA reports.

or

• SoHaR can provide consulting to an in-house

effort which may include any combination of:

training, system set-up, tools and/or continuous

program support.

Either way, SoHaR will walk you through the process

so that your organization is able to successfully

complete the FMEA and fully trust the results.

What will our FMEA and reports
include?

• List of critical failure modes and whether they

have been accounted for in the design;

• List of provisions (detection methods &

compensation provisions) required to make the

current system safe.

At the end of every effort, the reports and electronic

libraries developed in the process will lead to an easier

task in future FMEA efforts. As in the case of

hardware, a software FMEA is an incredibly valuable

addition to the organizational knowledge base, allow-

ing for safer and less costly programs in the future.

ALD Headquarters:

Sonol Tower 11th floor 52

Menachem Begin Road,

Tel-Aviv, 67137, Israel

Tel: +972 3 7913200

Fax: +972 3 7913210

E-mail: support@ald.co.il

SoHaR's automated FMEA tools allow you to
build extensive libraries of failure modes,
failure effects, system effects, and detection
and mitigation provisions. The libraries
enrich the organization knowledge base and
directly reduce costs in future efforts both by
making early designs safer and by reducing
future FMEA efforts.

ALD

