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1. Introduction

The Bootstrap technology is one of the most powerful tools for modern data analysis
and constructing inferential engine. :

The paper presents the main ideas and principles of the Bootstrap technology
application for field data processing. Theoretical inferences and clear engineering approach
to the estimation of widely used RAM parameters using Bootstrap approach are described
in the paper. B

Traditional methods of applied statistical analysis are based on the prior hypothetical
models (distributions) and suppositions about items under analysis. These assumptions
sometimes appear o be not adequate to actual state which drives to untrue results. For
reliability analysis it is extremely important due to lack of field data: small samples, non-
homogeneity, censoring, etc. Two examples of such errors are shown in Appendix.

The main advantage of the Bootstrap technology is to provide precise enou gh decision
of required problems and to avoid rude mistakes as you do not need to issue non-relevant
suppositions.

Upon obtaining arbitrary data sample (from experiment, testing, field, etc.) the
Bootstrap allows to generate as many additional samples as necessary, with absolutely the
same statistical characteristics which offers the potential for accurate estimation methods
and test of hypothesis.

1. Theoretical Concept

The main idea behind the Bootstrap technology is reproduction of the origin sample in
order to obtain a required number (it can be very large!) of samples with identical statistical
properties. This idea is close to the concept of Maximum Likelihood: data we obtained is
the maximum we can rely upon. Such manifold data allows to identify algorithms (Tules) for
solution of given problems and getting required estimates,

Bootstrap resampling methods are based on the two principles of mathematical
statistics, that is: "Convergence of an empirical distribution to the theoretical one", and
"Reproduction ability of Monte Carlo Simulation of random variable values for a given
distribution”,

An observed datn sample of size n defines the following empirical distribution,
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n

P (t) =?: welt-t,)
-1

where t; is a member of an ordered set of time sample under analysis (TTF, TTR, etc.);
w; is a corresponding frequency; :

e{t-t,) is a unit step function,

ie. e(t-t;)=0,for t<t; and e(t-t,)=1 Ffor tzt,

The simplest theoretical Monte Carlo procedure of generation of new samples with the
identical to the original sample characteristics (Cdf = F, ) is as follows.

First, the n uniformly distributed integers over the segment {1; m] are generated as
usually in Monte Carlo simulation. Let us consider them as numbers of elements of the
original data sample.

In accordance with the just identified n numbers we create a new so called "Bootstrap
sample" from the original ope in the following way. Assume, n, (where 1 < n; < n) is the
first random number, then the first element of the new Bootstrap sample should be the
element number n, of the original sample. If n, is the second random pumber, then the
second element of this new Bootstrap sample should be the element number n, of the
original sample, and so on until we get the new sample of n elements. Such generation
process (it is named "Bootstrapping") of obtaining samples of size n should be performed
the given number of times B.

Basing on the received large number B (10? - 10°) of samples one can perform = test
of hypothesis, select a regression equations, determine an optimal replacement policy, derive
accurate estimations and confidence intervals for all the necessary Reliability and
Maintainability characteristics and parameters (such as Time to Failure distribution, MTBF,
MTTR, Probabilities, Up-Time Ratio, Reliability Growth model parameters, etc.).

2. Bootstrap Application Examples for RAM Analysis

To demonstrate the necessity of the Bootstrap technology, let us consider the typical
Bootstrap approach to solving such difficult problems as building the confidence intervals
for various RAM parameters (statistics), selecting an adequate time to failure/repair
distribution model and Reliability Growth (RG) regression function.

21  Building the confidence intervals for various RAM parameters

Assume, for the given original sample, B Bootstrap samples were generated. For each
of these samy 5 we calculate a point estimate § for a parameter © under analysis, for

o
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n
example, MTBF=H=; t,/n .
=1

We comprise an ordered set of received @ statistics for all B Bootstrap samples,

that is: B,<0,5...<9,.

As usual, the low y-100% confidence limit for MTBF is to be found. With this
vurpose, we calculate r, . =ent[B(1-y)+1] , ie. the integer part of an expression

[B(1-v)+1] .Theinteger r,, givesa number (index) of an element of the ordered

U set obtained from the generated B Bootstrap samples. Obviously, this element

MIBF, =B,..(p(1-y3.17 IS @ required result.

Unbiased pivotal y100% confidence interval is defined as:
( BFJ'-GJ:HJ—(%&“) )3 MTBFJ“‘“[L(%'Q—) ] ):

where the index j should be defined as a number of element MIBF, which is the closest

one to the ¥ ,, where ¥ ,is MTBF of the original sample.

Any required confidence bounds for arbitrary RAM parameters not related with a
distribution model (MTTR, Probabilities, Up-Time Ratio, etc.) can be found in the similar
way.

22 Selecting an adequate distribution model

The possibility to define the confidence intervals for swnmary statistics (such as
moments about origin, central moments, cumulants, etc.) allows to solve a problem of
selection of the most adequate distribution mode! from the given distribution set. This
problem cannot be resolved by the traditional methods which are only hypothesis tests for
goodness of fit.

The solution is based on the well known property of distribution of limited random
variable: If two distributions have close values of the first 4 to 6 moments then they are

very similar to each other and can approximate each other.

The selection algorithm is as follows.

We define the first 4 to 6 empirical moments for the received B Bootstrap samples. For
each moment a nested set of cevtral confidence intervals (straps) is calculated. For each
type of distributions under aralysis corresponding parameters and moments are defined on
he base of the original sampue.

1477



The most fitting distribution is one whose moments are found in the most narrow
confidence intervals. Experimental testing of this method approved that no error occurs

even for the small origina! samples when n27 .

23 Approach to Reliability Growth analysis

The Bootstrap technology gives an effective solution to a problem of selection of the
most fitting regression also. In the RAM analysis they are defined as functions of time.
For example, the Reliability Growth analysis requires to estimate changing of MTBF and
its VAR over the initial and next time periods. Selection of the most fitting model is
performed in accordance with the given criteria.

Theoretical estimates of required statistics can be calculated for each period of time.
The differences between empirical point estimates and corresponding results of given
regression models define errors for each period of time. The Bootstrap allows to generate
as many error sets as necessary. Using these multiple error sets it is possible to identify an
optimal regression model in accordance with minimal average or maximal total error, or
minimal confidence error area, etc.

Assume, we have made a decision what Reliability Growth model is to be used - Duane
or AMSAA. The Bootstrap technology allows to evaluate the accuracy of estimates of
model's parameters and the model itself! Let us consider, for instance, the Duane mode],

Le. MIBF_=T®/k .The Bootstrap permits to define the y-100% confidence interval for

the growth rate a and, hence, the corresponding confidence interval (in the tube form) for
the Cumulative MTBF and test time.

The similar method can be applied for evaluating arbitrary regression models, including
all models of MIL-HDBK-217 for electronic components reliability.

3. Bootstrap for Censored Samples

Considered Bootstrap methods are applied to complete samples. However, in real life
such RAM data as TTF, TTR, and others is not complete and, as a rule, only partially
available. In other words, field data samples are censored. The main reasons for this are as
follows:

- high inherent reliability,

- limitation in time and expenses,

- changing of test or operation conditions for some items under analysis,
- impossible to continue observation after warranty or contract time,

- need for urgent reliability estimates, and so forth.

Methods of statistical analysis of censored samples differ significantly from classical .
approaches for complete ones and do not provide approved solution of required problems.
The }dootstrap technolog, Jermits to solve such problems.

\.’e will demonstrate '’ e Bootstrap application to analysis of censored samples of failure
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intervals.

Let we have multiple censored sample, including n values t, of two types:

- true failure intervals (some of them - after repair or removal), i.e, non-censored data,

- elapsed time of products from the beginning of their operating or after repair, i.e.

censored data, .

We should sort all these values in ascending order. All censored values are marked with
a certain score. If some censored values are occasionally equal to the non-censored ones,
then they should be placed after the censored values.

The received ordered set defines a part of an empirical Cdf =32 (r)

{n) Vi™Via L) Vi
F t)=) 2o (t-t or F t)=
zc (¢) E ve) ( 1) re (E) )
) ' n+l-v_,
where V=V e B2
PL np+1-i
i- is a current number of the ordered set of non-censored value t,
¥ - is a conditional number of a current non-censored value t,
Vi - is a conditional number of the previous non-censored value t.

The range of random variables is &,,,st<t . where t,, and t,, are minimal and

maximal non-censored values of the given sample, v, = 0.

The main Bootstrap procedure for the censored samples is similar to the above
described one for the complete data. On the base of sampling integers uniformly distributed
over the segment [1; n] we identify numbers of values in accordance with the original
sample. Using these numbers we build new Bootstrap samples (each of size n) where the
censored values are marked.

If in some generated sample all values appear to be censored, it is not considered at all.
The Bootstrap method allows to generate the given quantity B of required samples very
easy.

A part of an empirical Cdf matches each of these samples:

Fg‘é’(’j; (¢),J=1,B
Let us consider two methods of definition of frequency and fractile confidence intervals
for the given censored samples. We'll define ¥ confidence intervals for arbitrary non-

censored values t; and its cumulative probability =i (¢ )

The 1-st Method
We generate Bootstrap samples and consider only those incliding at least one non-
censored value t. For each of these valurs we calculate a corresponding estimate

Faaly (& 1} . The quantity of required Rootstrap samples is defin:d by the given number
B of the received values t,



Similar to above case, for the given confidence level ¥ here we should build an ordered

set of estimates Faaly, (t,) . 3=1, B and calculate the central, pivotal, the shortest or one-

side confidence interval.
The y confidence bounds for the value t itself are defined as reciprocal function of the

Cdf part Fi@ (t) for the closest bounds of the frequencies.

The 2-nd Method .
We consider such generated Bootstrap samples that include non-censored values b
fitting the following equality:

Filly (tyy) =F2 (£))

The Bootstrap procedure should be continued until we receiﬁe the given number B of
such samples. We again sort the values &,,,7=1,8 in ascending order and calculate
required confidence intervals for fractiles t; corresponding intervals for the probability

PSP (t,) are defined as values of the source empirical function F{2 (£) for those

argument values equal to received estimates of confidence bounds of t,
Similar to the case of complete data, censored samples provide selection of the most
fitting distribution from the given distribution set: To do this, the censored empiricat CDF

should match the original part of Cdf FS2' () , that is:

-v,-1
Figl (&)= 1 (9 LV (et ,) R a1
T R () FE () b T 07

Similarly the censored Cdf Fygls (£),7=1,B matches Fifl, (¢t) for all

Bootstrap samples. :
For each of considered Cdf the first 4...6 empirical moments about origin, central
moments or some other summary statistics can be easily defined. i
On the base of the ordered sets of these statistics a system of nested central confidence

intervals is built in accordance with the given sequence of confidence levels Y2920
Then as for the complete data case, for each theoretical Cdf F; (t) truncated in the points
tois 80 Loy B8, Firp(£) = [Fp(6) ~F (L0 1/ [F () ~F(ty,) ] , values like summary

statistics should be defined. That theoretical distribution whose moments have the most
narrow confidence intervals, should be chosen as the best one.

The received truncated Cdf Fyy (t) defines also the complete theoretical Cdf F (t),
which allows to d:fine any required R .M parameters.
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4. Conclusion

The Bootstrap is a distribution-free method and it allows to eliminate main
disadvantages of the non-parametric statistic, as well as encourages the parametric analysis
as a problem of identifying on adequate distribution cannot be solved by the traditional
statistic.

Certainly, the Bootstrap cannot discover any statistical property that are absence in the
original sample, but it allows to utilize all information containing in the original sample.
Moreover, the Bootstrap provides discovering any non-homogeneity of the original sample
and testing various hypotheses about this sample very easily and visually.

The new possibilities of the Bootstrap technology allow to upgrade some existing and
- standardized statistical methods of reliability analysis and develop specific software support -
- Bootstrap RAMCAD. Practical experience shows that an appropriate Bootstrap software
for the RAM analysis significantly extends Bootstrap applications, increases its accuracy and
accelerates the result calculation.

Advanced Logistics Developments (A.LD. Ltd.) is one of the first developers of the
state-of-the-art software package based on the Bootstrap technology.
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APPENDIX

Example of Paradox with Reliability Distribution Models

Goodness-of-Fit Test showed acceptable conformance of received sample data (see
Reliability Data Table) to the following distributions with the identical expected value:
EXPONENTIAL, WEIBULL, LOG-NORMAL, and FRECHET.

_Standard parameters of these distributions were estimated using Probability Paper
technique.

The results obtained support the necessity of correct and consistent identification of
reliability distribution laws.

Result Table

Distribution and its Parameters 05900 (hours) ;

EXPONENTIAL (3 = 0.0023) 3003
WEIBULL (1 = 7.5 * 107, b = 2.3) 1066
LOG-NORMAL (m = 6.11, 0 = 0.28) 1070
FRECHET (1 = 2.96 * 10% b = 2.5) 6142

Reliability Data Table
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Bootstrapping for Model Testing
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Bootstrapping for Models Selection
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