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ABSTRACT

Bootstrap technique offers the most powerfil and efficient implementation tools for the modern multivariate
analysis, test of hypotheses, knowledge acquisition, experimental inference. This paper proposes algorithmic solutions
of complex data based problems: selection of diswributions, regression madels, discrimination analyses, imputations for
missing data, diagnostics, predictions, etc., without the need for using unrealistic, unverifighle assumptions. Advanced
bootstrap methods allow a full extraction of knowledge from available daw in reiation 1o the considered task,
qutomatically build the required knowledge base from the data base and receive responses of interest, ie create an
automatic generator of inferences. The obtained results define the design of new family of knawledge based intelligent

Systemns.

I. INTRODUCTION

The bootstrap paradigm develops effective automatic inference techniques for complex actual data structures.
At the same time the bootstrap algorithms are comparatively simple, flexible, logical, straightforward and to the point,
- close (o natural human thinking,

Historically, ‘this data-based simulation resampling technology was initiated by one of the authors Peshes (1970,
1972). By using resampling procedures (multiple reproduction of the original sample in samples of the same size with
identical statistical properties - now called bootstrap samples) the following problems were solved:

- defining required confidence intervals for amy characteristic of interest;

- selecting adequate distribution law for observed sampled data, the key for sericus errors elimination in the use
of statistical models.

The software support for the new method was represented by the package known by the name PARUS.

In the late 70s Efron (1979) introduced the second geperation of this paradigm and the new term "Bootstrap™
He showed that the bootstrap is a special peneralized methodology for an applied statistical probiem solution. The
bootstrap technique was suggested for sampling bias correction, higher order accuracy for any parameter and confidence

Currently it is established that the bootstrap technology defines the rules controlling the actual data sampling
process and allows:

- complete information (knowledge) extraction from the observed data in required direction and construction of
appropriate inferences, using self resources;

- powerful tool introduction for hypothesis testing and selection of a model most conforming to the observed
data.

This concept of entity selection is close to the Fisher's principle of maximum likelihood, which is the keystooe
of mathematical statistics. The practical applications of this classical pattern are based on the usually unknown
hypothetical family distribution of the observed data Moreover, the maximum likelihood estimations do not allow for
bias correction arising at the time of sampled data processing, i.¢. they are unable to extract all of the information from
the source data. The bootstrap technique guarantees overcoming of these difficulties.

Inference engines for all problems such as estimations, constructions of confidence and prediction regions,
hrypotheses testing, dependencies finding, muitiple imputations, discriminations, classifications, diagnostics, predictions,
etc. represent a series of completely automated procedures, which are performed on repeated simulation sets of bootstrap
samples,

Thus, instead of the prior hypothetical models (distributions, formulas, equations, heuristics, etc.), the daa
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based bootstrap resampling methods are able to consider the original raw data such as pattern of investigation situation,
and extract all necessary information for the given problem.

Further development of these concepts allows to determine the peneral architechture, performance specification,
alporithm description, and user interface design of the universal automatic inferential generator for a new family of self-
training systems extracting knowiedge from available data which is called Novel Expert System Intellipent Marvel
(NESIM). NESIM operates as a rule with a specialzed data base for a specific application and automatically builds 2
knowledge base according to the considered problem. Thus, NESIM is able to make valid inferences by itseif using
source data, i.e. by its own bootstrap. This essentially distinpuishes NESIM from traditional expert Knowledge Based
Systems (KBS). The success of such KBS is 1o a large extent depends on the one hand, on the abilities of highly
qualified experts to express their knowledge and, on the other hand, by the ability of knowledge engineers to create
adequate rules and knowledge base from contacts with these experts.

" The main goal of this paper is to develop major principles, standard procedures and methods of processing data
at hand (similar to the industrial flow of raw material processing) which automatically produces optimal inferences for
any complicated testing situations.

The possibilities of self - training (automatic leaming) and self - development of NESIM are provided via
agtomatic modification of inference engines and input of new source datz. The development of inference mechanisms
is realized by means of regular testing of various models and corresponding bootstrap procedures for known situations
determined by the available data This way of self - checking allows to draw conclusions about the best method of
providing maximum result precision or minimum risk of any emor inferences.

The important advantages of bootstrap technique and particularly its ability to solve numerous previously
insolvabie problems open new horizons in the modem information techrology. : ‘

2. BASIC CONCEPTS AND TECHNIQUES OF BOOTSTRAP

The utilization of parametric statistics methods provides prior information about the type of family distributions
of considered data. However, the problem of defininig the suitable family distributions from available data, which would
allow to avoid serious errors in statistical inferences, has no solution. On the other hand, finding solutions by nmon-
parametric methods independent of distribution causes a portion of information contained in the observed data to be
losed. Even though these methods are applicable under more generalized conditions, they do not allow to extract all
required information from the available data and their power is lesser than in the parametric approach. Bootstrap
paradigm proposes specialized computer-oriented resampling data processing technology to alleviate this problerm. Two
fundamental theorems serve as the mathematical basis for this technique: uniform convergence of empirical distribution
to the theoretical one and artificial reproduction of random varialbles for the given distribution. These theoremes are
true without strong restrictions. ‘

The main idea underlying bootstrap is as follows. The data at hand is treated as if it represents the entire
population. The available data sample is recreated a multiple number of times in order to obtain a large number of new
bootstrap samples similar to the original sample and of the same size. Statistics of interest are defined for each
resampled sample. This ensemble of obtained estimates characterizes variability of the corresponding solution for the
original sampie and allows to evaluate its quality (accuracy), compare differing solutions and make the most plausible
inference. -
The mathematical essence of the bootstrap paradigm is that an additional randomization axiom is introduced
into the data processing algorithms which allows to realize an effective control directly during the solution process and
automatically forms corresponding inference engines. The original data is used as a pool from which, with the aid of
bootstrap resampling procedures and corresponding plug-in estimates, it is possible to extract all contained information
in required direction, i.e. bootstrap technique is capable to consider the original raw data as a pattern of the situation
under consideration. Thus, as mentioned in Bluvband and Peshes (1993), bootstrap technique allows to eliminate the
principle shortcomings of the nonparametric approach. On the other hand, bootstrap as a powerful tool for testing and
selection of adequate models, expands the possibilities of the parametric approach. L

Let there be a random observed sample X=(X,,X,,-..X,) of size n drawn from some population F. The simplest
reproduction procedure is defined by the random selection of n elements from the original sample X with repiacement.
The weight (probability) of each variable x, equals n™ ; i=1,2,...n. Evidently, this method can be used for any arbitrary
sample space, whose elements can be numerical or quality vanalbes, vectors, images, maps, etc. The observed sample
X defines discrete empirical distribution of these units. .

If the observed data points X represent numerical values with some continuous variable, then to obtain bootstrap
samples, the smoothing procedures can be used. This kind of bootstrap is called smooth. The simple smoothing
procedure tepresents segmented-linear approach by using uniform distribution for jumps of observed empirical law. The
standard smoothing procedures apply the kemnel density methods of estimation, according to Rozenblat (1956), Parzen
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(1962), Cacoullos (1966), Yepanchikov (1969). The smoothing empirical distibutions for the source sample X enable

to obtain bootstrap samples containing a2 new real mumber in the gaps between the variable values of the original sample.
In the process of specific problem solving arises 2 nesd to receive bootstrap samples with required properties.

For exampie:

- anequalnumberofunitsoftheoﬁginalrzwdatamustbecomainedinthegenemlpmﬂationofboastrap
samples (palanced bootstrap); .

- among the bootstrap samples there should be no sample coinciding with the original (unrepeated bootstrap);

- the bootstrap procedure can be applied to the specifically selected subset of the original sample (partial
bootstrap);

- bootstrap sampies are formed acconding to some generating mechanizm;
A general framework of bootstrap technology for problem solving is described bellow:

- sequential generation of a large number B (10%-107) of bootstrap samples; ‘

- caleulation of characteristics of interest for each of the above (e.g., order statistics, moments, model parameters,
etc.); .

- direct transformation of simulated set results comesponding to the formulated problem and creation of inference
engines, checking and control mechanizms; .

- obtaining a solution of the considered problem, representing the answer most conforming to the real data
On one hand, the observed statistical material in the bootstrap serves as the basis for space formation of

possible solutions, and on the other hand, defines criteria for decision making.

3. BOOTSTRAP BASED SOLUTION FOR SOME IMPORTANT PROBLEMS

3.1 Selection of Most Adequate Distribution Function

‘ Let there be an X observed sample of limited random real variables and some set of various families of
theoretical distributions F,(5), Fy(<),....Fo(X). The task is to choose from the above the definition best corresponding
to the observed data The solution of this problem, soived as a rule based on goodness of fit tests, is incorrect. The
proposed solution is based on known property of distributions that if two distributions have close values for 46 first
moments {semtiinvariants) then they approximate each other.

The solution of the considered problem is implemented by the following selection algorithm. B boatstrap
samples are created for empirical distribution of observed data X. Empirical moments of order i=i,2,...m are found for

each of the B bootstrap samples and for the source sample. Moments ¥ f';) of order | are arranged in the variational
set V&L) v gﬂ)s. . <8V ii-’:,,; i=1,2,..m. Parameters are estmated and m comesponding moments vp are
calculated for each theoretic distribution F(X); =1,2,...k by the source sampie. A series of nested pivotal confidence
intervals of smallest length are comstructed around each empirical moment v, found from the otiginal sample by
decreasing the confidence levels v,>y/>... .
Denote y100% interval for the i-th moment {vg;‘}" Y g,""f], where jj-—eotf ¥B] for {yB-ent[yB]}>05,
otherwise |, j.=ent{ YB}-1; where ent[] means integer part of [ If ome of the momemts V<V }i‘:,, or
v, >viZ, ; i=L,2...m of some theoretical distribution then this distribution s not cosidered any longer. The lower
and upper limits of specified intervals define an m-dimensional hyperrectangle. Evidently, with decrease of y level, the
new hyperrectangle is nested into the hypemectangle for greater level, ie.

(Fid -, ) (Frow o ) .
Ve o V(ad 1y, © [Va) « Viia 1y, for o<y, forall i=1.2...m.

The most appropriate theoretical distribution is selected from the considered family based on criteria falling
into the smallest hyperrectanpie. The considered method does not require assumptions of symmetry for moment
distribution the way it used to be at the first application of bootstrap technique for the solution of this task based on
central confidence intervals. However, supposition of independent distribution of moments of different order is
considered in both solutions. '

The algorithm for the required solution which allows to relax the independence restriction is proposed bellow.
Ennumerate all empirical moment vectors of bootstrap samples from 1-B. As in above case, the variational sets are
formed for each empirical moment. Each member of this set has a vector number to which it belongs. If one of the

moments V; <V E{L} or Vi~V {f:,,; i=1,2...m of some theoretical distribution then this distribution is pot
cosidered any longer. The minimal confidence regions where all specified moments will be included are constructed for
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theoretical moments of the rest of the distributions. These regions are defined by confidence intervals for each

momert [v 32 ,vi2%'1;  i=12,...m where the lower limit is defined as the closest value in j-th variational set

(42
which does not exceed the value mn[v(l,,,vir(s)}, i.e. v(fa‘,’"s m:.n[ Viiey+ Vir{S}] and

. the upper limit as the closest value vd;’; 2max (v 4. vip(8)] whcrescprrwpcnds to distribution F,(X).
g

Evidently, level v’ of confidence interval for ith empirical moment is estimated by the
value [ (F 7 3o0+1) B2 .Foreach constructed confidence interval there isa comresponding subset of numbers
of empirical moment bootstrap vectors. The quantity ¥ of mumbers which form the intersection 8% of considered
subsets allow to estimate 2 common confidence level ¥ ii=x () B~1 of all constructed confidence intervals.
F oy =y |y then the specified moments are independent and the appropriate distribution

can be selected by the method described above. B ¥ oen<yi2 ¥yt . . .y M | then the considered distributions are

not adequate for actual data approximation. Otherwise, distribution selection is as follows. First, theoretical distributions
which are worse than the others are removed. These distributions include ones in which at least one of the component
vector moments defining some upper or lower confidence limit contains a vector number which does not belong in the
intersection S™. As a result of such exclusion the length of some confidence intervals and their levels will become

smaller. The remaining vectors define new confidence levels 7{2’ ,72‘2) Fow s y,f,z’ and common level ‘yéﬁ, .

Thereafter, the distibution where the removal of the theoretical moment vector results in the smallest
vae y1'yi¥ ..y Y 2y 5], isexcluded from consideration. This process is repeated until there is left only one

most appropriate distribution. The described method determines 2 peneral principle for selection of distribution whose
theoretical moments fit closest into the confidence intervals for comesponding empirical moments, i.e. most conforming
to observed data.
These methods are easy to expand for finding adequate multivariate disiributions for observed sampie of random
vectors. This bootstrap technique allows also to construct confidence intervals for found distributions parameters.
The importance of solving the probiem considered above is that it usually constitutes a part of a greater
parametric decision making process.

3.2 Regression Problems

These problems are closely related to the previously described cases because they represemt tasks of joint
distribution of investigated variables. In a traditional sense these problems have two aspects:
- selection of an approriate dependence of some variables (responses) from the others - regressors (mgr&esmn
analysis);
- . investipation of mutual association between several variables (correlational and exploratory analysis, reduction
of dimensionality, analysis.of variance).
The regression curve represents the conditional expectation of response y given x E(YIX)=P(X) where y and
x, generally speaking, are multivariate vectors, WX} some functional of x. If distritution of y for each x is kmown, then
it is possible to find a mean y given x, i.e. it is possible to find the required regression y piven x. In most real-world
situations these distributions are known, so the exact regression can be found. In such a case the regression curve must
be estimated In clagsical regression anaiyms this problem is solved in the linear model class:

E(y|x) E B,g;(x) =GB where B is the vector of unknown parameters B and G is the vector of nonrandom
=

functions g,(X), called exploratory variables. The probability structure of this model for observed sample of n vectors

is Y=G,f+e, where Y, is the i-th response, G~G(X), & is an error term, i=1,2,...n. The task is to find the unknown

parameters, their confidence limits and building prediction intervals for responses when new observation expioratory

variables exist. In repression theory these problems are solved only in the cases when the random emors e are

uncomrelated and their distribution has a constant varance. Moreover, it is usually presumed that these errors are

normally distributed which leads to the independence of these random values. Bootstrap allows to surmount this
limitation. Efron and Tibshirani (1993) give several variations of such solutions.

This task is related to finding regression -curve for the given type of linear mode! G. A more general problem

is the selection of a model from some set of dependencies most conforming to actual data. The bootstrap technique
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enables solutions fdr those problems. Observed data define empirical densities {(X,Y), £,(X} and correpondingly the
conditional empiric density £, (y|x)=Ff,(x,y} £1 (%) . The regressional curve

E(y]x) -—'fyf(y[x)dy and m-1 moments E(y7|x) =fyjf(y|x) dy, =23,..m are deficed as

empirical statistical approximation for observed data. The B bootstrap samples are generated from the original data. The
specified characteristics are found for each bootstrap sample. The unknown parameters of each considered model G are
estimated from the source data and corresponding moments E(y7|G) are defined. The selection of the regression
model depends on the condition of all of its moments belonging in the narrowest bowtstrap pivotal confidence regions.
Moreaver, bootstrap allows to obtain a solution for more general regression models that have no mathematical solution,
iLe. when the regression curve is non-linear in the parameters.

33 Dependence Problems and Statistical Inferences

These problems are considered most difficult. Solutions are obtained only for some simpie data structures or
for restrictions of non-adequate real situations. In classical statistical analysis the association between the variables is
estimated by correlation coefficient p and the correlational ratio v which satisfies the inequality (=p’Sn<1. The
correlation coefficient p characterizes the closeness of linear statistical dependence and does not reflect other forms of
mutual association between variables. The condition that some of the random variables are non-comrelated p=0 is a
necessary condition of their independence but not sufficient. The comelational ratio n i3 not connecied with the
assurnption of lincarity and evaluates the fact of presence or absence of functional dependency. This coefficient does
not reflect the type of this dependency except for statistical or strong linear connection. The difference n®-p®
characterizes the non-linearity measure. Therefore, the comparison of values p and 7 allows to estimate only some of
the simplest properties of mumal association of considered varialbles. ‘

The effective abilty of bootstrap technique to build the required confidence intervals and to investigate any
properties of real empirical distributions allows to utilize the necessary and sufficient performance of mutual association
of variables between themselves or dependence of some variables from the rest. :

Let there be a matrix of observed data X= (xjm) containing 0 p-dimensional vectors, j=1,2,...o; i=1,2,...,p.
The matrix X defines empirical density of p-variables f(X®, X®,...X®) which serve as an approximation for their real
distribution X", X, X®". If the varables are independent in aggregate then the necessary and sufficient condition
for their function distribution is the equality f{IX®, X@,  XO=fXMAXD).. XD, ie. it represents the product of
marginal distributions of each variable. The variables x ', ..., x'® are independent of the variables
) x(ik’l),..,x(l’? if f(x(i]_)'..-'x(ig)! x(ikﬂ'),-..,X(ip})zf{xti‘),...,x(it}) .
, This criteriz allows to establish the connection measure between different groups of variables and to investigate

the type of dependence between them. Let the confidence intervals [al(ﬁ,a,g’] be constructed for any arbitrary

group or all variables of observed vectors independently for i-th variable. Each of these intervals represents a segment
Ofthqvaﬁzﬁonal set for the corresponding variable with confidence level y,<1 which are estimated by the ratio of the
fiuan.myofveqms belonging in this interval, including the boundaries, to n. For the selected group of m variables
sy, the indicated intervals form some confidence m-dimensional hyperrectangle. The probability of being included
In this region, ie. the confidence level vy, is estimated by the quantity of vectors divided by n. The quantity of vectors
I8 determined by the mumber of vectors falling into all of the considered intervals. If the considered variables are
independent, then the common confidence level ¥ n™Y; ¥y ++ Yy, =Ying for any population of indicated
intervals. If the considered case contains dependent variables, then y,.>v,,. The possible situation when y,,<y. IS
Dot of interest because it indicates that dependence of variables exists in another region of values of those variables. It
i3 easy 1o see that the maximal value of v, does not exceed min{‘yi‘,?i:,' s o1 Y1571, =Yaep - Therefore,
for some comstructed system of confidence imtervals, the common conmfidence level satisfies the inequality
kvhéymﬁyhd. The difference ¥y, characterizes a measure of association or deviation from independence of
Population of investigated variables in the coresponding area of their change. In the case when the partial characteristic
of association of components i,,i,,....i, relative to getrlyaz-rdy IS eStimated, the

{par) : .
valus ydﬁ;r -—-m:x.n{yi;,‘yiz, - ,‘{ik}zydw is used.

Thcﬁrsttimea'simﬂarmmmecfdcviaﬁonﬁvmthévaﬁablcindcpcndcnbc was imtroduced by Pearson (1904)
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for two variables of specified frequency contingency table. The proposed characteristic normalized by association

coefficients Con™(¥ e~ Yiat) (Youg~¥ms)” fOr varizble population and 28 = (¥ oon™Y ind) (y e ey )t

a particular component group allows to estimate the association of different variables defined by arbitrary d:stnbuuons
of any dimension in the specified area of their change. The indicated coefficients are changing from 0 for independent
variables 1o 1 in the case when at least one variable is completely defined by the others.

Investigation of the intersection of sets of vector mmbers falling into different constructed confidence xeglons
for the source data, and sirnilarly fmtheboﬁsnapsampiﬁ,aﬂcwmdeﬁmthepmwofanytypeofdepcndence and
to solve the problem of chmx:ns:un reduction. This direction considerably expands the possfblhns for pa:ametnc
methods.

Non-parametric solutions, 'Ihcmmnadvantagesufbootstrap technology are determined bytheablhtytorecelvemu-
parameter solutions of most important problems of diagnostics, predictions, finding responses in regressions, imputations
for missing data, etc. maximally conforming to the actual data

The natural approach to problem solving consists of the following. For some tested vector, containing some
set of known attributes and one or more unknown components, it is required to find the nearest neighbours from the
observed vector sample.. Each observed vector is split into two sub-vectors. One contains the components similar to the
ones contained in the tested vector. The other sub-vector contains responses.. The task is to find a subset of observed
vectors most similar to the tested vector. The unknown characteristics nfmtmst.zc theabsenicomponemsofthetmted
vector, are estimated by responses of the indicated subset of vectors. , . -

et the observed data contain n p-dimensional vectors X, ie. X;={xs", x/¥, ..., %"}; #=12.0
and the tested vector is Y={yti‘),y””, .- .,yu*’}; k<p ,where i,i,..,i, defines common components of
the observed vectors. If the tested vector contains at least one unit which is bigger or smaller then the corresponding
components of observed subvectors or the quality component absent from the actual data, then the problem is not solved.
In this case it is said that the piven vector does not belong to observation space. This condition can be sometimes
comrected, e.g. if the characteristic .of the trend of the compared variables is known.

The algorithm of finding the nearest neighbours follows. Each k-dimensional observed subvector in relation
to the tested, forms some confidence region consisting of defined pivotal confidence intervals for each of the k-
components. As before, the variational sets are formed for each of the components of the observed subvectors and
simultanecusly each value of the set is marked by the number of the vector jt belongs to. When the qualitative and
catepotized -variables are ordered, their identical elements follow one after the other. . .

‘ 'Iheconstmctmnufprvota!conﬁdf.ncemrvalsforg-tbsuhvectorbyﬁml,compouent,l—l,z,,k,lsdeﬁmd

by the following rules. If ;2 is contained in the variational set 10 the left of the value y ¥ | then the lefi
confidence boundary is defined by ;" ; the right boundary - by the closest to the sight or coinsidting with y ‘7

value of this variational set If x; G is to the right of the %' then it defines the Tight boundary; the left
bouiudary comesponds 1o the closest on the left y valueoftbcmusxdemdseLAndﬁnaﬂy, it x,
with y 42 then the deteriorated ‘pointed confidence interval defined by one value x5 =y 2 is considered.

Thevcctor y(il} mwhxci;aﬂcomponents:lcommdcmththccmmondmg components of_xj'i_ﬂ ls_ﬁstwin.'rhc

coinsides

level YJ_ of the constructed conﬁdcnce mwrvallsmnmated bytheranoofquannty ofsubvectorsfalhngmtoﬂ,

including theboundanw, dmdedbyn.'l‘hccommou level ymﬁ) of this region for the j-th object is defined by the ratlo
of the quantity of subvectors falling info all confidence intervals for each component, to n.
The first nearest neighbour furtbetestedvectorlsdeﬁnedbythenumberj, forwhxchthcmzmmum

Yina(J1) =¥y (G e, (F2) - 5, (F1) 5Y4, (J*Jl)yﬂ (F#7,) -+ ¥y (J#7,) and

Y XS ¥ ccnl)- In case when not one of the observed subveclors satisfies themhcaled condmon, thcprobiean is not
solved because the tested vector Y does not correspond to the observed data. - '

Afterﬁwﬁrstmrestne:ghbwrlsfwnd(vecmr Xj ),allvectorsmdeﬁwdmthuumbets j#_jl ,‘
the confidence interval of which falls the vector Xj . All such vectors are excluded from the number of possible

nearest neighbours of vector Y. The significance of this procedure (Pareto-optimal principle, Pareto (1909)) is that all
of them have larger deviations in the same direction from the tested vector Y in comparison with the vector X; . The



second pearest neighbour X is found similarly and later the indicated Pareto procedure mpe:formnd for it. Evidently,

ﬁxievely,,(il)zy,,,(i,) Thsptmswperfomedunﬂlaﬂofthemmsﬁmxghbmmmfamilembvmm
mumbers jy, o ISI

The (p-k)-dimensional subvectors of responses comesponding tow:hofthe found nearest neighbours are
wtilized for the problem solving. The value of the levels v, v=1,2,...t can be considered as a relative estimate of
the distances of the subvector j, from the tested vector Y. Then the weight of each neighbour is estimated by the

r T
value wv={yind(jv) 2 [Yina(ii] ‘1} ; E w,=1 .The required empirical distribution of responses is
vl =1 -

defined by the resulting r subvectors, the weight of each is W;v=1,2,...r. The weighted bootstrap of this distritation
allows to estimate al] characteristics of interest and their confidence regions. It is easy to see that the finding of bootstrap
sampie responses can be organized acconding to the alporithm described above which is performed on the source sampies
of k-dimensional subvectors. The required solution for some simple problems for sufficiently representative source
sample may be ohtained without bootstrap. A

The proposed approach allows to obtain nonparametric solution for the set of multivariate statistical analysis
problems indicated abave.

4. GENERAL FRAMEWORK OF NEW AUTOMATICALLY SELF-TRAINING INFERENCE MACHINE

The ability of beotstrap technology to extract the necessary knowledge and to obtain the required solutions from

adequate sowrce data allows to desipn a sew family of intellipent systems NESIM. Project NESIM allows to realize the
idea about the ideal inference machine of the fiture described by Efron and Tibshirani (1993):
"The theory of the bootstrap is "pre-loaded” into an algorithm and carried out entirely by the computer for any particular
application. This doesn't free the statistician from thinking, of ccruse, but it does allow the thinking o concemn
inferential questions of direct interest to the scientist, rather than a host of small mathematical difficuities.
One can describe the ideal computer-based statistical inference machine of the fisure, The statistician enters the data,
the questions of interest, and the class of allowable probability models. Without further intervention, the machine
answers the questions, in a way that is optimal according to statistical theory.” The NESIM is able to improve "this
ideal” by eliminaring the necessity for the emry of the allowable models into the designed inference machine. The
characteristic of computer-based products of NESIM family is defined by the aggregate of included subsysterns,
algorithm of their implementation and cooperation providing industrial technological approach to data processing by
bootstrap tnethods. The main NESIM subsystems include:

vector data base in the heterogenious attribute space open for additions;

- building block for initial knowledge base providing friendly user interface of problem input and classification
of vectors data base in accordance with the type of the given problem;

- building block for working knowledge base realizing automatic control of non-contradiction in separated classes
used as training samples;

- probiem solving block caiculating responses (prediction, diagnosis, estimation, etc.) for a specific vector task;

- self-training block in which the classification analysis is performed by the vectors of the existing data base, the
results of the obtained solutions, with expansion of the data base, antomatic selection and modification of
inference engines, differert model testing;

- service block in which the analysis of informational importance of components of vectors of working
knowledge base, determination of their dependence, investigation of ability of dimension reduction, graphical
imaging, etc. is performed.

The main advantages of the proposed products of NESIM family are as follows:

- industrial technological approach to data processing:

- automatic creation of required knowledge bases from the given data bases;

- automatic generation and modification of inference engines;

- ability of self-analysis, self-training and seif-development during the system usage;

- natral empiric way of data presentation; '

- possibility of testing various hypatheses, models, concepts and inclusion into the system.
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